This paper presents the design and analysis of a forklift hydraulic system utilizing an opencenter configuration equipped with unloading (safety-overflow) valves and an emergency lowering mechanism. The hydraulic system includes an external gear pump, double-acting power cylinders, hydraulic distributors, and control valves. A comprehensive approach is undertaken to select system components based on catalog data and to model the flow rate, required torque, and power characteristics of the pump, along with load handling performance as a function of cylinder dimensions and hydraulic pressure. System behavior under various operating conditions is simulated using Automation Studio, enabling performance optimization and fault response assessment. The inclusion of unloading valves and an emergency button enhances system safety by enabling controlled pressure relief and emergency actuation. The impact of thermal effects, filter efficiency, and reservoir design on hydraulic fluid integrity is also addressed. This study aims to improve reliability, efficiency, and safety in hydraulic forklift systems while supporting informed design decisions using simulation-driven methodologies.
Loading....